«Из-за малозаметных симптомов на начальном этапе развития диагностировать болезнь Альцгеймера возможно только по физиологическим изменениям в головном мозге, зафиксированным на МРТ. Используя данные медицинских исследований пациентов с Альцгеймером, ученые обучили нейросеть выявлять заболевание. Для этого они построили модель нейронной сети на основе механизма комплексного оценивания, преодолев проблему ограниченности исходных данных. Полученные результаты лягут в основу программного обеспечения системы диагностики болезни Альцгеймера», - сказали в университете.
«Во многом это объясняется этическими мотивами: пациенты или их законные представители должны дать согласие на использование их медицинских данных для научных целей и публикации в открытой печати. Например, на сбор данных о 81 пациенте, 59 из которых имели подтвержденный диагноз "болезнь Альцгеймера", потребовалось пять лет», - сказал ученый, отметив, что эту проблему удалось решить за счет использования механизма комплексного оценивания, также известного как "корень принятия решений". Этот механизм традиционно применяется для агрегирования нескольких показателей в одну комплексную оценку.
«С помощью методов идентификации корней принятия решений нам удалось получить такую структуру нейросетевой модели, которая способна с высокой точностью описывать изучаемую область, в данном случае - диагностировать болезнь», - пояснил Кожемякин. По словам исследователя, применять предложенный механизм можно и в других сферах, где исходный набор данных существенно ограничен.