«При разработке нейронной сети, состоящей из двух полносвязных слоёв, мы использовали функцию активации ReLU. Эта функция обеспечивает нелинейность и помогает модели лучше выявлять сложные закономерности в данных. Для оценки результатов тестирования мы применили метрику Median Absolute Error (МАЕ), которая наглядно продемонстрировала точность прогноза и показала значительное влияние экстремальных климатических условий на точность прогноза по нескольким станциям. В частности, на «холодных» станциях результаты оказались немного хуже, чем на «тёплых», – рассказалазав.кафедрой «Экология», доцент, к.б.н. Виктория Вячеславовна Ерофеева.
«Тестирование проводилось с 2020 по 2024 гг. Нейронная сеть была апробирована на нескольких станциях Антарктиды и показала хорошие результаты. Перед нами стояла задача сравнить возможности нейронной сети в прогнозировании климата для регионов континента с различными температурными режимами. Детальный анализ температурных флуктуаций и выявление ключевых периодов изменений позволили создать объективное представление динамики климата на полюсе. Для обучения модели мы использовали доступные данные из метеостанций на полюсе с 1958 – 2019 гг., которые включали температурные изменения, нормализацию и предобработку данных, а также стратегию валидации,которая позволилаполучить высокую точность прогнозов. В рамках проведённого исследования, с учётом особенностей климата континента, мы разделили станции на «теплые» (Ротер, Беллинсгаузен, Вернадский) и «холодные» (Восток, Амундсен-Скотт. Предварительные результаты показали, что тренды на «тёплых» станциях, где средние температуры превышают –30 °С, отличаются от трендов на «холодных» станциях с значительно более низкими температурами», – пояснила старший преподаватель кафедры «Экология», Жанна Сергеевна Жукова.